(U) CARNEGIE-MELLON UNIVY PITTSBURGH PR ROBOTICS INST

A BOURNE ET RL. 16 APR 82 CMU-RI-TR-82-5
UNCLASSIFIED

F/G 972

D-A126 389 DESIGNING PROGRHHHING LHNGUHGES FOR MANUFACTURING CELLS_.

1/1

NI U O Y W TN S Y T sy WY e e ey
; - et e e BB I S A A P A i i TN i S
-'I‘
E:‘v
3
-
. t
g s
.".l)
| W
| .O u =)
——— 56 32
3 _ L .2 2 B}
.‘f —_— = s
[;-‘ : 1= 1 X
I w B2 il 2.0 .
g l .l E: - .
bq. ; ("
- = m“ .8
F , =
-
N. e—— —_— ——
A
|
=
1
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A .3
u;"_.
-,
-
i
¢ -.W
- .
F B
1) g
LRy
t
| R
¢
»
.
e o
il 3
\
‘N
=
. S
r 7 @ Py
o LIV NP UREV LN VO VU S e A s T L . it o . ¥ AR 4 X Y " et

e ————

.....

......

Carnegie-Mellon University
o i
DESIGNING PROGRAMMING LANGUAGES ;
@) FOR |
oD MANUFACTURING CELLS i
o i
Ne David Alan Bourne and Paul Fussell '(C&j Q 4
2 2 The Rot':’c‘ati“cs Ircjstitute C; '52 & i
_ arnegie-Mellon niyersity " Q*
< Pittsburgh, Pennsylvania 15213 Q\
B g /"/ j
d
»
THE
E ROBOTICS
INSTITUTE
CMU-RI-TR-82-5

T DISTRIBUTION STATE G B

—

| Aopravead o i
~}

PP S P SN S TSP TP S M S S

e A e M TR N O NN N A A I NS A AN NI, |
- i
R, o .
T‘i .SECURITY CLASSIFICATION OF TwiS PAGE ‘Uhon Dase Sntered)
p— -\ READ INSTRUCTIONS
3 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FARM
[-_ 1. REPORT NUMBER 3 2. GOVY ACCESSION NO.j 3. RECIPIENT'S CATALDG NUMBER
: QG sEi-ri-87-3 AN 207
: 4. YITLE (and Subtitle) ' o S. TYPE OF REPORT & PERIOO COVERED
DESIGNING PROGRAMMING LANGUAGES FOR Interim
MANUFACTURING CELLLS
. ; €. PERFORMING ORG. REPORY NUMBER
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(e)
David Alan Bourne and
Paul Fussell
1 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
- _.Carnegie-Mellon University RS NORIGUIIT BN AT
g !Mhe-Robotics Institute
¥ ,» Pittsburgh, PA, 15213 :
‘, 11. CONTROLLING OFFICE NAME ANO ADDRESS -} 12. REPORT OATE
p- j¥ee
- Office of Naval Research April 16, 1982
£, Arlington, VA 22217 i 13. NUMBER °"1"8“"55
2 Ta. EQ':JIITOFNNG AGENCY NAME & ADDRESS(If dilferent from Conirolling Oflice) 15. SECURITY CLASS, (of this report)
» UNCLASSIFIED
15e. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of thie Report)
17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, I different frocn Report) .
X ‘-.'
. Approved for public release; distribution unlimited
- 1 ‘ ‘ ’
4 .
’_'- 18. SUPPLEMENTARY NOTES
|
3 -
-.,. .
19. KEY WORDS (Continus on reverse sige |l neceseary and identlly by block number)
E
Fq
E_ 20. ABSTRACT (Continue on reveres eide Il neceseary and |dentily by block nunber)
A
Fe
]
»
b
’
J
| 4
. FPORM
¢ (2] 0] tam 73 1473 eoiTion cr 1 wOV 6313 OBSOLETE CIA
S/N 0102-014-6601 UN SSIFIED
r SECURITY CLASSIFICATION OF THIS PAGE (ohen Dete Entersd)
| 4
L ‘ .
" S e X RPN i it e L

- " - P T T, W . oy LA
O SRR I A T I S S T A A A IR I A S T T,

..........
S TS R I e U AT R =y 1y RS w, P el T o g A R

Designing Programming Languages
for
Manufacturing Cells

David Alan Bourne

Paul Fussell O

g The Robotics Institute /K\ & 8

| Carnegie Mellon University U g /
,z’ittsburgh. Pennsylvania 15213 Ve) & o /

f April 16, 1982 ; C)
4

Abstract

T
.

- v
FONCRUA S e 4 i

t! A manufacturing cell is a complex collection of machines and electronics which must be intelligently
supervised. It should be flexible enough to readily adapt to different part styles and robust enough to operate
without human assistance for reasonable periods of time. A programming language with a correct choice of
language properties can make meeting these demands and others likc them a manageable programming task.

A rule based language in conjunction with a set of grammatical constraints supervises a cell which
manufactures turbine blade pre-forms. The non-procedural nature of the language provides considerable
flexibility in the operation of the ccll. The rules arc executed in no particular sequence, but rather as the cell
is ready for them. Unfortunately, the non-procedural approach allows for unplanned interactions between
rules. Most of these interactions?-, can be avoided by defining which rules can operate concurrently. The
language is logically linked to the pre-form cell through a simple databasc managcment system. The database
system maintains a model of the cé‘l] uscd by the language interpreter to decide which rules to execute. This
database system also protects the cell programmer from the low level programming details (e.g.,

communication protocols).
L" l
Copyright © 1982 David A. Bourne and Paul S. Fussell

)
’.

This research was sponsored by the Robotics Institute, Carnegic-Mcllon University, and, in part, by The
3 Westinghouse Corporation.
L The original manuscript was prepared for (Feb. 25, 1982) and presented at (May 25, 1982) the IEEE

Electro/82.

This document refleets modifications (April 2, 1982) to the Eleetro/82 version. mmﬁ.
L ttandsfdaidd o u -A—-:

A’.‘,\rno.av(] fy v Tiirengs
bty

Vo daetnbation Unlipdted

T e
e e ol g ¥ Sl T R T R
Ca T

Table of Contents
1. Introduction
2. Language: Demands and Suggestions
2.1. The Language Task
2.2. The Program Forms
2.3. Levels of Abstraction
2.4. Language Primitives and the Definition of Truth
2.5. Program Decomposability
2.6. Error Detection: Pragmatics to Semantics to Syntax
2.6.1. The Conflict Set
2.6.2. Some Constraints
2.6.3. Warnings
3. The Manufacturing Cell: System Architecture
3.1. Cell Language Function and Structure
3.2. Cell Equipment: Machines and Controllers
3.3. Language Database
3.4. Rule Execution Example
4, Summary
5. Acknowledgments
References

vﬁ—Tm TR T

p———

Pr———————

00 ~J IO\ WL bW

Py

r »
o

a8
.

Ol
EaS

/

T v
YT

i~ S

T

P Y e

i e i A

T —
————TTTTYT T T R AT S A ARG N R s e R e R I O e oS

O R

- ., ~
At at e taladae . -;\\kx!.\ L Sy

. % -
---;-'\‘ TR B e el B OE5 Sl ", YR ST WL S TR S

i

List of Figures
Figure 2-1: Hlustrating a cell control hicrarchy
Figure 2-2: Rule Database and the Conflict Set
Figure 2-3: Two robots contending for the same space
Figure 2-4: Robots with tails
Figure 3-1: Plan vicw of the Manufacturing Cell
Figure 3-2: A diagram of the control flow within the cell. 11
Figure 3-3: An example of intcraction between the language interprcter and the equipment 14
database.

—
[==J0Vo R < IS R N

e PRy PR PP GO UL EESPE UL STl G 1 L C PO . DL THE DA JU WG S OWD S Wy sear s B

L T
o ciauh le

Vo
ety

'l 'l

- .
S e T A
A N

v
. ¥ _.,.*r_vl~'v
‘. .
. e .

LGRS As on ol ad ol o
.]

q 3
-’

- -y

e T e, T,

1. Introduction

A manutacturing cell is a logical unijt of machine tools combined to increase their utility. Justification of
this cellular approach is provided by the specded flow of parts, inventory control, reduction of labor costs,
and the reduction of change-over time from onc part style to anothcer [2). The coordination of the machine
tools within the cell requires a sophisticated supervisory program managing cach of the machine tools both
alonc and togcther. This involves , for example, the cold start of cach machince tool, externally triggering its
primitive programs, monitoring crror states, and scheduling preventive maintcnance. A sophisticated
supervisory program will opcrate the cell unattended.

Manufacturing cclls do not comfortably fit within the traditional classifications of computer controlled
machine tools, e.g., Computer Numerical Control (CNC) and Direct Numerical Control (DNC). The
tendency in industry is to describe CNC as using a dedicated computer to control a machine tool and DNC as
using a computer to distribute part programs to remote NC tools[5]. These definitions do not accuratcly
describe the functionality of a flcxible manufacturing cell, though some researchers extend the definition of a
DNC controller.

A supcrvisory computer could operate the machine tools in a fixed scquence much as a NC machine tool
operates. Howcever, a multi-million dollar unmanned manufacturing ccll must be managed rather than just
operated. A ¢cll management svstem sends its commands to the machine tools as cach tool is rcady rather
than forcing a fixed and unalterable scquence on the entirc ccll (i.e., scheduling). It monitors the progress of
the ccll and cither performs or schedules maintenance operations as they arc required. It furthermore acts as
an interface between the working machines and the high level factory operations (e.g., part design and
purchasing). The final supervisory program is written in a rule based language whose run time system takes
on the management responsibilities of the cell.

The evolution of programs designed for cell supervision is benchmarked by work such as that of
Popplestone [8), Weck [11], and McDonnell-Douglas [6]1. These approaches to cell supervision have been
bascd on procedural languages like FORTRAN, Pascal, APT (Automatic Programmed Tool), or a
modification of thesc. Popplestone and McDonnell-Douglas bascd their work on a supersct of APT (Robot
APT and MCL, respectively). Weck's work was donc in a combination of FORTRAN and CAMAC
(hardware and softwarc protocols for low level communication).

Proccdural languages have been designed around a Von Ncumann computer architecture which has a
single processor and a single memory store. This architccture scts up a bottlencck in the flow of instructions
[1]. because cach instruction is expected to go through the processor in turn. A procedural language design,
and a single processor computer architecture arc not appropriate for the tasks of a cell management system.
Each machine tool is cquipped with its own controllcr which manages the machine in real time. These
controllers arc in wrn linked to a central processor. A non-procedural language describes an algorithm in
such a way as to make the order of program statements unimportant. In fact, the statements arc cxccuted as
somc goal process nceds to invoke them, such as keeping all of the machine tools busy. In the case of a
manufacturing ccll, the instructions take a long time to exccute because they represent physical actions.
Therefore, a non-procedural interpreter is able to direct a flow of high-level instructions to cach controller as
they arc needed. The discrepancy in time. between computational and physical actions, avoids the bottleneck
in the central computer.

]‘l'hc McDonnell-Douglas work is sponsored by the Air 1-orce Integrated Computer Aided Manufacturing (ICAM) Project.

re PRSI TP NPy WP) FIPRILUPGL UPos - oy 2 e iy P W T N WD N SRR LY

LA i i e

v
=,
.

2

L e A i .‘-.}, r r—r-‘v
P

£ |

Ty

e 'T'"‘ . e &
¥

. l“'.'o"‘

v v e w

et s Sy i Lt
-

D At R B
i

v

[———

Fh i P Sl Patel e e
) B e e L S L

R A R AR T ST R ———
SECaNE = - 4

-

0y

A rule based language is essentially a sct of conditionals which can be treated non-procedurally. The
condition amounts to the pre-conditions for executing a particular cell instruction (e.g., "is the furnace door
open? -> then get part”™). This implies that the supervisory program is able to sequence the events within the
cell even though the events do not occur in a rigid order. An interrupt driven system is also non-procedural in
nature, but it obscures the conditions of execution making the final system difficult to understand.

A formal deductive system is the primary example of a non-procedural language. The order in which
theorems are proved has no effect on the set of provable sentences. That is, there are no relevant side effects
in the the course of a proof which impinge on the system as a whole. Unfortunately, systems which have not
been adequately formalized are characterized by many unsuspected side effects. ‘These side effects are
manifested by rules which interact because of their interdependence. Two robots could be put in a collision
course under one ordering and affect useful work under another. A sect of grammatical constraints is
proposed which filters out rules that have undesirable side effects in a particular context.

Our research is directed at the theoretical aspects of language design as well as the practical matters which
are involved in implementing a cell. The cell is currently being installed at the Westinghouse Electric
Corporation. Turbine Components Plant in Winston-Salem, North Carolina. It will produce stcam turbine
blade pre-forms from billets (cylindrical metal stock). The major mechanical process in the cell is open-die
forging which opcrates on billets that are in excess of 2000° F. The cell contains an industrial rotary furnace,
two materials handling robots, an open-die forge , a vision based loading station for acquisition of the billets
and a vision based gaging station for inspection of the forged pre-forms. The goal of the language
development is to provide a system capable of autonomously supervising the cell operation for a reasonable
period of time, e.g., a weekend.

There must be a logical connection between physical machines in this pre-form cell and the words in the
language. That is, the terms in the language must be meaningful to the supervisory program. A simple
database management system makes this association between words and salient cell features. The features are
contained in a highly structured database and are used to model the cell at a particular time. Whenever the
language interpreter accesses the database through the management system some of the cell features are
updated.

The rest of this paper is divided into two major parts. The first part defines a language which is based
around a sct of formal properties which are useful for cell programming. Thesc propertics guide the language
definition through the sub-sections. And the final part of the paper clarifics the connection between the
characteristic language propertics and our particular manufacturing application.

2. Language: Demands and Suggestions

2.1. The Language Task

A complex manufacturing cell is composed of many computer controlled wols. These may include robotic
arms and machining equipment or sophisticated sensors such as vision systems. The best return on capital
investment for this expensive equipment is realized by optmizing the mcan throughput time. It is not
important to save milli-seconds by optimizing the moves of the robots, but it is critical to maintain the flow of
the parts within the cell and prevent untoward shut-downs of the cell due to equipment fuilures such as dirty

dsetieittecatiochdesiagedh 20 s

R T SR AT B crag Soeira e o e e e e S e e e ,':
=g S ey DSENER E e

ity Sea R ST GOSN PO ORI NP SN RSP L. -t} o a

—

oil filters. The cell is to be unmanned and shoulu be capable of preventing hardware failures by automtically

scheduling tasks for preventive maintenance. This is achieved by placing sensors on the mechuanical

hardware. by providing the means to convert the sensor information into sensible numbers and by having a
n priori knowledge of when the hardware is likely to fail.

Another means of optimizing throughput involves the ability to casily decompose a program into parallel
sections that can execute independently. Each machine tool typically takes several minutes to perform a
single operation making parallel execution of independent operations important.

&R .

The resulting program is complex and needs to be casy to update. A program is modified when new part
styles are manufactured and when the cell itself is altered as in the addition of new machine tools. One way to
manage the complexity of the program is to structure it in a way that it can be understood at different levels of
detail. And. of course, the final program should be if at all possible error free.

In order to achieve these demands the language must possess a number of formal properties which make
the problems inherently manageable. Our language design is based on such a set of formal properties which
can be justified independently of the particular language. We feel that the point here is not to design a new
language which is meant to be every programmer’s panacea, but rather to encapsulate a special set of language
properties under one framework.

T

2.2. The Program Forms
A manufacturing cell is usually made up of a set of machine tools each of which has many functions and
F(error states. By establishing the pre-conditions of cach machine function, it is possibie to execute program
v segments as they are needed rather than as they appear in the procedural flow. In addition, most machine
error states are paired with a suggested course of action. Both of these basic requirements call for a non-
procedural rule based language. This programming paradigm has been extensively studied under the guise of
production systems and has been reviewed by Waterman and Hayes-Roth [10].

The general form of a program and its statements is a conditional.

(antccedent) — {consequent}

The left hand side is evaluated as a boolean expression. and if TRUF. then the right hand side is executed as a
set of sequential actions. An example program segment which commands a robot to place a work piece

(Billet) in a furnace could be written in the following way. -
‘ (And (Hold Billet) { (Move Rohot Door)
(Open Door) —~ {Move Robot Furnace)
(Vacant Space)) (Place Billet)

(Move Rohot Door)
(Closc Door) }

; The convention used here is that the first clement? of a list on the left hand side of a rule is a truth predicate

Ll'hc convention of putling a function first in a list is compatible with the 1ISP programming language.

13 S o s e e e e e e e B

Lase ana s

8 R

-

and the first clemcent of a list on the right hand side is a command function.> For examplc, the truth predicate
Hold is YRUE if and only if the robot is actually holding a Billet.

2.3. Levels of Abstraction

Structuring a program hicrarchically has many different advantages. The cntire program can be seen and
undcrstood at a glance even though it may be at a coarse level of abstraction, This conveniencc is available to
everyone who necds to look at the program, including the shop foreman, the programmer, and cven the
computer doing the exccution. Fincr levels of abstraction provide morc and more details about particular
aspects of the manufacturing ccll. This makes it both casy to find dctails in an cxisting programs and to add
new rules without disturbing an existing program'’s internal structure.

In keeping with the program forms discussed previously éach program is made up of a single conditional:
the root of the program.

(Active Cell) — {conscquent}

The conscquent in turn can be a set of conditionals or a set of basic actions. This rule makes it possible to
turn the whole ccll on or off by making the boolean Active of Cell TRUE or FALSE respectively.

The next level of abstraction naturally falls into the different modes of operation for the cell. These modes
of opcration might include: cold starting the cell, scheduling preventive maintenance and the basic execution
cycle of thc machines. The final levcls make up the actual cell control, and its verificational sequence.

(Cell Status)
|
(C cotastart) (BatchRun) <52’:X?§£22¥2>

<Machine Ope rations>
[

<Status Ver v atioh >

Figure 2-1: 1llustrating a ccll control hicrarchy

3T‘hc notaton for implication (i.c.. "=—") is only used to highlight the difference between the left and right hand sides of a rule. It
could just as casily be wntien as a function found first in the list (1.c., "(if (antecedent) {consequent})™).

R T u S a eparw— | DRSNS R PGS NCE B G LN i P W I S SR W Y gy W WD g W W

(-

i L S bt i e e i S S A iR - - — e

P R o P e e T ™ aiy W™ " "™y

. “ " el = Timaats mu2lle -

2.4. Language Primitives and the Definition of Truth

Tte language primitves correspond to primitive cell functions and states. The primitive cell functions arc
cach a sct of non-decomposable machine actions which return TRUE upon suceessfully completing the task
and FALSE otherwise. The machine states can also be viewed as a function which declares that the machine
is in a particular state. If the machine is alrcady in the correct state then TRUE is returned and FALSE
otherwise. These simple definitions constitute the basic semantics of the language.

The cell primitives arc a set of functions from which complex programs can be built. Two example
primitives would be a robot move command and a particular machine location. If the machine position
changcs,4 then the only change that has to be made to the language is to the semantical definition of the term,
and not to the program itself.

A ccll primitive has scveral important characteristics.

e A primitive is a simple function which ncver necds to be decomposed further within a particular
manufacturing cell.

e A primitive is uscful and therefore used in complex configurations. In other words, a
manufacturing cell for making turbinc blades would not have a primitive which rcturns the
current phase of the moon.

e A minor change in a primitive does not disrupt the portions of the supervisory program which use
it.

e The details of how a primitive accomplishes its task are not needed by the supervisory program.

¢ The implementation of the primitive is confined to onc machine within the ccll. This corresponds
to a practical restriction which forces the real time control of a machine to be contained within its
own controller.

None of these characterizations of a primitive arc neeessary and in fact arc only used as guidclines to the
overall system design. A sample set of primitives is given for the open-dic forging cell in Section 3.

2.5. Program Decomposability

Decomposing programs into independent segments is an cxtraordinarily difficult problem for programs
which are written in an ordinary procedural language. However. programs written in a rule based language
arc claimed to be made of independent chunks which can be exceuted in any context. That is, they are
already decomposed into independent picees. This is a very strong candition, because it is so difficult to
guarantce that a rule's exccutian has no side cffects o the surrounding environment. This problem is
especially acute in physical systems such as a manufacturing cell where some side effeets may not have been
taken into account within the madel af the cell. This incompleteness is gencrally duc to the programmer's
ignarance of subtle iteractions between machine toals. The effect af interactions between rules has also been
observed by other rescarchers [7]. '

Only static locations would be madc primilive. 1'or example, the position of a furnace door would be pnmitive, and i1s posilion could
be changed only afier a major construclion project.

2.6. Error Detection: Pragmatics to Semantics to Syntax

A programiming crror in a manufacturing cell casily could cause a several hundred thousand dollar
accident. A 100-1b. work piecc could be dropped on a laser ctching device or a furnace could fail to open its
4 door beforc a robot trics to enter it. There arc many different kinds of errors that amount to a
S miscommunication between the machine and the programmer. That is, the programmer does not always say
what he means. Many of these crrors can never be detected, but many of the outlandish errcrs can be
detected and then avoided using linguistic techniques.

Program crrors can be found using a range of different language mechanisms. At one extreme you can sit
back and wait, and watch the machines crash into one another. This is a pragmatic approach. It is an cffective
but expensive means of error detection. A more reasonablc approach would be to simulate the program using
a computer model (i.e.. scmantics) of the physical machines in the cell. The program cxecution would then ‘
causc thc model to go through its paces. For cxample, two polygons intersecting might indicate that if this
program were (o run using real robots, then they would collide. Barry Soroka at Stanford has recently used
I this approach to help him dcbug robot programs([9]. Unfortunatcly, an accurate simulation is

computationally expensive and is only as reliable as the model is accurate. It should be pointed out that a
! purcly graphic simulation does not offer ANY crror detection facilitics per se, but rather is only a tool for the
programmer (o sce his own errors. It is certainly possible to extend the simulation to include geometrical
constraints that prohibit graphical primitives from intersecting. but this is at best a first cut at the possible
) crrors since it says nothing about a robot which needs to instantancously stop. It would then be possibie to
add deccicration constraints to all the robot movements, but then this list of constraints can be cxtended ad
infinitum. 1n fact, the general notion of constraints can be cxtracted and uscd to modify the basic syntax of
the final programming language. This is the final step in the continuum of solutions. More claborately,
programs that would cause machine coilisions with an unconstrained language would be meaningless and
N would thercfore never get to the exccution phase. The syntactic approach to crror detection has two
advantages over the more traditional means of simulation. It provides a more strcamlined means of encoding
the real world constraints, and it dircctly prohibits a programmer from writing the programs in the first place.

e

The real world constraints of a manufacturing ccll can be cmbedded in the grammar of a language. For the

! moment, consider a manufacturing cell with a single robot. Such a cell has many of the complications that are

found in cclis containing 15 machine tools. The most obvious commands for a robot inciude a move
instruction that is constrained by the physical capability of the robot, at Icast in terms of position and speed.

(Move x y z speed)

Onc surc way to avoid problems is to make the robot movements primitive, so that the robot arm always is ;
accclerated and decelerated properly. This is in opposition to making both positive and negative acccleration
primitive. Unfortunately this is no solution at all, since when the rule of making programs primitive is
| applicd ubiquitously. it trivializes the idca of having a language. ‘T'he entire cell program is madc into one
huge primitive. The alternative is to find rules which allow robot primitives to be combined in compiex ways,
while avoiding the disastrous combinations cxemplified by robot collisions.

[T P TP DY NP S O WL N S WA g . - T TR N, L O M SRS Y SR 5l b B e A s es Boimsmecil roiiosscnn i reis P -

"’ ¥, b 3 - - e - 3
T It TS BT S A e v irie Tl et o A i e S e e e i S A A SRRSO Sl

SR o Eo, oW, o e el el e s e e 19 e
[N . . . TS Y el B TR B R e L L v

2.6.1. The Conflict Set

At cach level of the hicrarchy at a particular time there is a set of satisfiable rules: the sct of rules whose
antecedents are TRUE. This sct is called the conflict set. The name originated on a sequential machine where
it was necessary to choose which rule could be executed first. In this case cach rule is sent to a physically
different machine, so the rules can be exccuted in parallel.

Rule
Conflict Executable
Data- Set i
base ules
] . Grammatical
Satisfaction Consliaints

Figurc 2-2: Rule Database and the Conflict Set

2.6.2. Some Constraints

Grammatical constraints are used to restrict some rules in the conflict sct from being cxccuted. These
constraints cxamine the right hand sides of the conflict sct rules and determinc which predicatc argument sets
arc incompatible. The rulcs passing this cxamination are cxccuted while those rejected are deleted from the
conflict set. One simple constraint prohibits the host computer from scnding more than one set of
instructions to a particular controller. '

A — {(Robot-1-gripper open)}
B — {(Robot-1 gripper closed)}

In this examplc only one of the rules would send its command to the the Robot-1-gripper controller.

Figures 2-3 and 2-4 show two robots that can reach into each other's range. The next constraint restrains
the two robots from working in the critical region at the same time.

A = {(Robot-1-move D)}
B — {(Robot-2-move d)}

The grammatical constraint must take scveral factors into account in order to determince that these rules are
incompatible. Each of the discrete points {C,c,d} should be marked as being bart of the critical region.
Therefore, this constraint prevents both of the robots from going through the critical region in the same
system cycle. Onc approach is to encode the robot movement points in such a way that movements can be
dcfined in terms of intervals, For cxample, a lettering scheme makes it possible to represent a movement
from point A to point D as the closed interval [A D], which implics that the points B and C are included
within the interval. This suggestion makes it possible to test the constraint relation with a subsct operation.

i e P S SR U W WP e reeey J e DLW P Ty) L

i e e
S e 1S g e R N Mo, Mot e upte
S A e T RS S el o g A

IF Robot-interval-1 [Critical-set :nd
Robot-interval-2 () Critical-set
THEN constrain a rule

Several interesting problems arisec when a robot can take two paths to a particular point. One path could be
short and intersect with the critical region and another path could take the long way around. The system must
then decide whether it is worth waiting for a path through the critical region or whether it should just take the
alternate route. Fortunately, it is still casy to represent the circular nature of a robot movement in an interval
notation by reversing the arguments (c.g., [D A)).

Critical
A Region b
B a
/1) '._?c
- d g
D
E

e

Figure 2-3: Two robots contending for the same space

The tailed robots in Figure 2-4 represent a difficult class of problems, because they strike at the heart of the
inadequacy of abstract models. Moving the robot from point A to point B seccms to be a perfectly rcasonable
action for the head of the robot, while the move has disastrous effects on the tail. While the tail can be dealt
with in the same way and in conjunction with the head, sooner or later somcthing will be left out of the
model. A hydraulic hosc may extend into the critical region in some robot positions and not in others.
Perhaps a more convincing example of this dilenma is a robot moving different size parts. This actually
changes the size and shape of the critical region and depends on how the robot is holding the piece.

b 2.6.3. Warnings

; The constraints arc making up for programs that arc incompletely specified. For example, the ordering of
program statements is intentionally left open until run time. This incompleteness is the source of some
trepidation.

If the conflict sct ever became too large, it would be time consuming to check all of the combinations that

5A_ non-nil inlcrsection is inlended 10 return TRUE

- - - - £ -3 o s - - s e
A B S e s e BT A M N M A A i A R i o I P R i N A e T A N R P i e T P TR P IR It
. IR o K eTEe » ™ ol Saal SRl N =
[N L. - - - > - L T P -l -, SR - - I8

4 9
e

&5

bs Critlcal

Regions

i

i

=

3

-

-

b

.

| i

=

.

B Figure 2-4: Robots with tails

»- g .

:,'_'. would be called for by the constraints. This would only become a problem in an large manufacturing celi,
:‘ because the conflict sct size is bounded by the number of controllers. This may become a determining factor

in drawing ccll boundaries.

A rule may be continually thrown out _2f contention bascd on the constraints alone. There are two possible
resolutions to this problem. First, the rule may be naturally executed as the compcting rule completes its
activitics. And second, this could be dircctly prohibited by the system forcing the rules to altcrnate.

.. T u,’ e e e

Constraints not only have to consider conflicting rules, but they must consider the current state of the cell.
This problem is brought on by the hicrarchical rule structurc which by changing the ccll at onc Ievel could
causc undctectable errors at another level. The constraints must be given access to the databasc in order for
them to make the appropriate checks between the rules and the cell state. The only other option would be to
save an cntirc list of exccuted statements and to recalculate the cell state. Since this option is absurd, the
purity of thc grammatical constraints must be violated by giving them semantical access.

A

The system may reach a statc of deadlock. That is, where there are no satisfiable rules Ieft to cxecute
because of resource contention. Consider a robot which is waiting for another robot to get out of its way. The
state of deadlock occurs when the second robot is also waiting for the first robot to get out of its way. This
assumecs that they are clever ecnough not to run into cach other in the first place. The problem occurs in
essentially cvery kind of operating system and has never been solved to anyonc’s real satisfaction, Two
approaches have been to avoid the problem through the use of semaphores, and to pre-empt one device in

Ei favor of another once the state of deadlock has been detected. Viewing physical space as a resource, it is

y possible to assign secmaphores to the criticial regions. The semaphores represent semantical access for the

i grammatical constraints and thus address the robot deadlock problem.

b .

i A systematic approach is being developed to detect and resolve cach of these problems. However, these

by solutions will only emerge after extensive research and an enormous amount of experience has been gained

E with an implemented system. ‘The implementation. and its relationship with the rule based language arc the °

focus of the next section.

WET LY

T

2
b
b
b
3
L
4
3
|
1
4
[
b

P B N WA e e Ny

N R A5 st oo S S o R il can i

T o™

~

. Y
.

- - - - - - - - - - - .“ - - - - - . - -

. C - e e Drpe i e S ¥ L Fle o Al Tw e el v, e s e O T) 9
ke T, -~ - o o 2 el lem - Coixb - e -, BT, g, P o e o ¥
- = i, ., S AT e A N e e s s T T R TN e L e T L TR L B,

3. The Manufacturing Cell: System Architecture

3.1. Cell Language Function and Structure

This language is implemented for a cell producing turbine blade pre-forms. The production of these
pre-forms is the first step in the production of one family of turbine blades which arc used in stcam turbines.
Pre-forms are produced by open-dic forging of cylindrical billets. Additionally, the cell heats the billet, crops
the pre-form and stamps the pre-form with appropriate model and batch numbers. Finally, the pre-forms are
gauged using a computer bascd vision system. Both the billets and pre-forms arc handled by two large robots.
The parts flow from the loading racks to the furnace, through the forging machinc, to the cropping/gauging
station and finally to a pre-form bin. Figure 3-1 shows the circular nature of this material flow.

forge

robot

furnace

vision gaging station

loading racks

Figure 3-1: Plan view of the Manufacturing Cell

The program structurc and its rules arc mirrored in the physical construction of the cell. The top levels of
the hicrarchy control the management functions of the cell and the lower levels describe the interactions
between the rules and the equipment. Figure 3-2 illustrates this linkage.

The rules interact with the physical ccll by determining the truth value of antecedents and exccuting cell
primitives. This interaction is through a database, as is gencrally the case with production systems [4]. The
database manager, in part, provides the truth content of any particular antecedent or conscquence to the
language interpreter (including the highest level rule -- active cell). The database thus acts as the interface
between the rule based language and the physical cell.

ST A TP - VS W W U W S e e o e S sl s iannin S a—nlia, .

R A R I D S R T i S A T e R T R T C ATl S i I TR B T i ST i i e i A R R i i it i
- . - - -

v v v
l"l"

Tal

O R
)
s

Fams 2 on o0 1
Cobe

3

(4
.

m—— '""f} . p———

T

WYY,

5o S8 SN b on on ol S8 2 ¢
.

e

AR st e B Sd ol Jen oo

- —~r s X b - v
e M e e B i R ’,x“-_. J‘?“"\.‘.\ ‘,\‘-.—‘.:“‘."?.. -1._-\._\-.1-‘_.._'\ »\. \._ T ¥ . T
e P PRCREN SN RO T ot T e B . G TG -0 N . IV i S Set Bod S i DN L A2 T USSR D

11

Cell Host Rules
 Data Base Management
Data Base
Logical
cntri cntrl cntri Machine
13 3 v R
‘? o0 00 @ L
tool tool tool

Figure 3-2: A diagram of the control flow within the cell.

The levcls below the database consist of the machinc controllers and the machine tools. This language
views thc controllers and cquipment as logically one. This allows the supcrvisor to ask a controllcr to execute
a program, but does not burden the supervisor with the dctails of controller opcration. Thc fact that the
controller did, or did not, cxecute the program is all that is relevant to th¢ supervisor. Additional information
is valuable for fault tolerancc and maintcnance, but supervision is achieved by viewing the controller and
equipment as onc logical unit.

Intcr-machine communication within the ccll is handlcd cxclusively through the supcrvisory host. This
includes both the cold-start of thc manufacturing ccll and the machinc tool interaction during ccll operation.
During a cold-start thc opcrating systems and the parts programs for cach controllcr originate from the plant
computer and arc distributcd by the host. Communication bctwecn opcrating machine tools frequently
occurs during ccll opcration. For cxample, the communication between the robot and the forge is passed
through the host. When the robot passes a billet to the forge, it must ask thc forge, via the host, to close its
chuck jaws.

Language status and maintcnpance operations interact with the databasc to provide ccll operating
parametcrs to the supcrvisor. The status opcrations arc classified as providing information about paramcters
whcre the supcrvisor can have immcdiatc conscquence. For example. the robot grippers arc cquipped with
strain gauges to indicate if a billet has been successfully acquired. Checking thosc strain gaugces indicates to
the supcrvisor the success of the acquisition and cither fircs a rule for corrective action or allows continued
normal exccation. In the same vcin, the supervisor will have access to information concerning the status of
the furnacc atmosphcere. If the atmosphcre goes out of tolcrance, a rule will be fired to correct it.

Maintenance opcrations arc rulcs generally designed to provide information for fault correction and for the
schcduling ot preventative maintenance tasks. Typically the supervisor docs not have immcdiate control over

- - P e T V SV e

. et

-t v,r e

CRER
P :

B

G g
P

(D

£ N ———

II’

Y 'Ar'_v.v.v

L T o W S N W e W e YT R S o b Gn] S >
"™ e Az 1 . . -

P > P .. AT T e i IR T P FT e T Y

o 5 0 A “fatata I 2 - X

12

the information provided by the maintenance rules. The robot servicing the fumace. for instance. should not
shut down due to a flter clog with its end-cffecter within the furnace. ‘The supervisor can only prevent this
from happening, however, by indicating that the filter should be replaced. ‘The longer time response for
correction of a problem indicated by a given maintenance rule suggests that they can be separated from the
other rules within the lfanguage. In this way the maintenance rules gencrating a list of cquipment nceding
service can be fired when the supervisor has time.

3.2. Cell Equipment: Machines and Controllers

The cell is programmed by creating sub-programs in cach machine controller. The sct of sub-programs
within the controller constitute the possible actions of the machine tool for a given turbine blade batch run.
The sub-programs also constitute many of the primitives of the cell language: the sub-programs arc primitives
for the supervisor. The primitives, as discussed above, are exccuted when a rule fires within the cell program.
Thus the machinc controllers must be capable of exccuting an internal program upon command from the cell
supcrvisor. The cold start condition of the cell requires the cell host to pass parts programs to the machine
tools, so they must havc the capability of receiving previously written programs from the cell host.

To maintain an accurate correspondence between the supervisor model and the physical condition of the
cell the supervisor must have access to timely information on the ccll operating stats. Items such as the
current program any one machine is running and the cxit status of the last program a tool ran arc important.
The progression of supervisor complexity toward autonomous operation for an extended period of time
requires a more encompassing model. Thismodecl, in turn, requires more information from the ccll. One of
the most interesting uscs for this additigpal input is the detection of faults within the manufacturing process
by visually inspecting the finished pre-form [3]. The visual inspection is being done by cquipment identical to
that doing the billet location for the initial part acquisition.

The constraints of the controllers have important conscquences for the language. The host computer
initiates all communication between a tool and itsclf, The available controller designs, however, allow them to
acknowledge messages only when they are rcady. The robot controllers, for example, are cssentially
completcly busy during robot translation. Only between the exccution of sub-programs do they have time to
correspond with the supervisor. This restricts the supervisor from terminating running sub-programs.

3.3. Language Database

The databasc system is the interface between the supervisor and the machine controllers. The information
within the database is used to pass and obtain opcrating paramecters to and from the machine tools. A
software interface driver is implemented to exccute this communication. The driver understands the protocol
for the communication between the host and the machine tool while the database supplics the driver with the
appropriatc parameters for the task at hand. The database is constructed to provide a consistent format for
those parameters. The cell has a large number of inputs to the supervisor. but these tend to be cither lincar
functions of the physical variable or simple binary inputs. ‘This has allowed us to construct the database
around an clement which varics from zero to one. This element represents. in a uniform manner, the value of
any of the inputs from the cell. Previously known minimum and maximum values are included in the
databasc as parameters to a normalization routine. ‘The fundamental idea here is the ability to represent a
varied and complex set of inputs as a uniform sct of values. ‘T'his internal vatue can then be casily translated
to numbers appropriate for cither an operator or a machine tool.

13

.

b The database uscs abstract data tvpes which include both the data and the functions necded to model the
cquipment. An entry in the database will typically include the following classes of information considering
the furnace as an cxample:

¢ The logical name of a software driver which understands the protocol for communication between
the host and the machine controller® .

n - v
i I"" 5 .Tr‘
s, A

¢ The nomalized valuc of the state. This value will reflect the last sampled value of the state
normalized to a range between zero (0) and onc (1). An executing rule will cause a new value to
be sent to the machine tool. The values in the database are then updated from the new machine
tool state.

e The maximum and minimum values of the state as viewed by the program rules. Thesc are
numbers representing the values of the state as understood by the programmer, e.g., furnace
temperature in degrecs Fahrenheit. '

o The maximum and minimum values of the statc as viewed by the machine controller. These
values arc related to the hardware on the controller, e.g.. furnace temperature represcnted by a
number between 0 and 4095 for a hardware device such as a 12-bit D/A converter.

CIC A S Sl LA S, e St ok 4
‘ .

¢ The memory location within the remote controlier from which the device is controlled.

¢ A number indicating how:quickly the machine statc changes. This information is used in deciding
how frequently the state necds to be updated. The furnace temperature changes rather slowly
with respect to the angular positios.of the furnace hearth. Therefore, the hearth position will be
updated more frequently than the furnace temperature.

To capitalize on the advantages discussed above. this databasc structure will also be used for the other
controller entrics. The number representing the memory location within the remote controller will point to,
for example. an exccutable robot sub-program. The robot will return a truth value (truc for suecessful
completion of the task and false otherwisc) when the sub-program completes. This truth value will be placed
in the state value. I

Figure 3-3 shows an example of the interaction which takes place between the language interpreter and the

F-l cquipment databasc. In this cxample the interpreter operates on a rule which opens the furnace door if the
. door is closed. The database manager (called "Get Truth” here) ascertains the truth content of a rule's
[antecedent. If truc, the interpreter sends the consequence to the database manager and it is exccuted. The
; cquipment databasc coniains:

1 e the "name” of the furnace driver

F-(

1 ¢ a normalized valuc of the door state (in this casc. cither opencd or closed)

¢ minimum and maximum values (all of which are zcro or onc for this binary system)

6lhc logical name is connected to the address of the driver.

Ty YLy W

L

e e e e e T P DL BT . ' PR R TrRn T DR E) : 2 L : TP WU O LI UL 0, O W W ¥ ik

(turnace-doorclosed) —p {furnace-door open }

I =

s Langunge
h Interpreter

Database turnace controller 151426 ¢
door position 1
: System operator min, max o,c
T' machine min, max 0,1
pr- l T reinote cntrl address 84284
L freq. of change 1
1 Equipment furnace controller . 1514264
Database furn. temp. 0.872

operator min, max 70,2300
remote cntl address 4462 16
freq. of change 0.4 i

Figure 3-3: _.An cxample of interaction between the
language interpreter and the equipment database.

o the memory location within the furnace controller that controls the furnace door.

The other entry in figure 3-3 is a representative entry for the furnace temperature control.

This portion of the database will also contain two other entries for registers showing the actual state of the
door’ . The combination of these two entrics provide the supervisor with three possibilities of furnace door
positions: open, closed or indcterminate. The indeterminate state is composed of two states, 'door ncither
open or closed’ and ‘door both open and closed.” The latter is a serious error. representing a failure in the cell.

The primary non-transportability of the system rests in the entries of the database. This implics that the
movement of the supervisor to a different manufacturing cell would primarily require re-writing the database.
By the same token. the majority of the work involved in adding a new machine tool to an existing cell is
adding new entries to the database.

7T‘hc door open and door closed stales are registered by limil switches on the furnace.

AR S S0 GlhiiTh D od Do on se B Sun o Lo A e e s i e e 1

g = —y——
L&

...........
...................
..........................

3.4. Rule Execution Example
A bricf illustration ot ruic exccution should hclp clarify how a.program is writtcn and cxccuted. This
3 cxamplc is conccrned with a sct of rulcs supervising a robot moving cold billcts from the loading rack to the
5 furnacc. For simplicity. there arc two ‘staging” arcas in this transfcr. Onc is in front of the furnacc and onc in
front of onc of the loading racks. Thc staging arcas arc, in a significant scnsc, safc locations for the robots:
they are not in any of the critical rcgions of the ccll nor do they place any portion of the robot in a critical
rczion. The robot in this example starts at the furnace staging-arca which is an cndpoint of one of thc robot

primitives.
A
(AND (Acquircd Billet InRack) — { (Locate Billct InRack) }
(NOT(Locatcd Billet InRack)))
I * B .
(AND (At Robot LoadStage) — { (Pass Rack BillctLocation ToRobot)
(Locatcd Billet InRack) (Acquire Bilict InRack) }
(NOT(Gripped Billct))) -
: c |
! (AND (At Robot LoadStage) — { (Move Robot ToFurnaccStage) }
(Gripped Billet)) '
D -_p
(AND (Grippcd Billet) — { (Open FurnaceDoor)
t (Cold Billet) (Pass Furnacc BilletLocation ToRobot)
(At Robot FumaceStage) (Place Billct InFurnace)
(NOT(Moving FurmaccHearth))) (Close FurnaccDoor) }
E
l (AND (At Robot FurnaceStage) — { (Move Robot ToLoadStage) }
(NOT(Gripped Billet))
(NOT(Full Fumace)))
The syntax of thc rules is described in Scction 2.2. To fully understand this cxamplc, a fcw comments on

thc scmantics of the functions arc notcd.

o Tcnses arc uscd to distinguish betwcen boolcan functions and impcrative functions. For cxample,
{Acquired Billet InRack) is a boolean function which rcturns TRUE if and only if a billct has
alrcady been acquircd. This is distinguished from (Acquire Ritlet InRack) which commands the
I robot to acquire a billct,

e Acquire and Placc implicitly rcfer to robot sub-programs. Thcir arguments specify to the DBM
(Data Base Managcr) which sub-program should bc cxecuted by the robot.

e Thc Locate function in rule A tells the vision systcm to locatc a bilict in the loading rack.

Gl bl e — - it gty L o WY VR WE R U . Al ian S armanton S, . SR P SN VP PP I SNDS Rl SN Sy tpae e DL |

—.

16

o Pass cxplicitly ‘passes’ a value from one machine controller to another. For example, (Pass Rack
BilletLocation ‘ToRobot) passes the billet location which is found by the vision controller to the
robot controller.

e At is a boolcan function with two arguments. The first argument is a machine at the position of
the second argument.

A trace of the cxccution might appear as follows.

¢ The language interpreter acting with the DBM determines that the rules A and E can be passed to
the conflict set. The constraints will not reject these rules, so they are passed to the DBM for
exccution. The DBM will tell the vision system to cxecute its billet location primitive which
returns the billet location. 1t will also instruct the robot controller to cxccute a sub-program that
moves the robot to the loading rack staging arca. The two scparate consequences can execute
simultaneously.

o The next pass of the interpreter discovers that no rules can be passed to the conflict set. This will
continue to be the case until the consequences of rules A and E have completed execution. At this
time, the interpreter will discover that rule B can be cxecuted. B instructs the robot to acquire a
billet from the loading rack. The (Acquire Billet InRack) consequence in rule B is a robot
primitive which

o movcs the robot from the staging.arca to a location over the billet
o lowers the gripper to the height of the billet

o closcs the gripper

o raises the gripper

o and returns the robot to the staging arca following a pre-programmed path such that the
billet docs not contact the loading rack.

o After the conscquence of rule B has completed. the interpreter passes the rules A and C to the
conflict set. Again, the constraints will not reject cither of these rules.

o At the completion of C, it is possible to cxecute D. Rule E is rejected by the interpreter because
the gripper docs contain a billet. If the programmer had forgotten the first consequence in rule D,
the constraints would have rejected D from the conflict sct. because cxecution of 1) would have
placed both the furnace door and the robot arm in the critical region of the door. - -

e Finally, E can again be fircd to move the robot to the loading rack staging arca.

4. Summary

i’he manufacturing cell of the future is the basic unit of a flexible factory. If a cell is expected to do a wide
range of tasks, then there must be a straightforward way of reprogramming it. ‘This involves a programming
language which encapsulates a set of properties that makes the programming task casy and which helps the
programmer avoid costly errors. ‘The same requirements would be found in a more sophisticated CAD/CAM
system where the program would he automatically constructed from a part design.

; bk - AL T PR SR e — (T ——) 2 T I greanye

P R T

...........

A non-procedural language has been chosen as the most likely candidate for cell control. Unfortunately,
the very advantages of this scheme, its non-sequential nature, also are the cause of its biggest problems.
Unwanted interactions between program statements could be translated into actual robot collisions which
must be avoided. Therefore, grammatical constraints have been added to choose which rules in the conflict
set can be simultancously exccuted. The implemented manufacturing cell will provide us with a unique
opportunity for developing new and more powerful constraints which in the long term will support a more
basic theory of language development.

5. Acknowledgiments

The implementation of a manufacturing cell requires the dedication of many people, The authors wish to
thank Paul K. Wright. and Jerry Colyer for much of the needed support and guidance. In addition this
rescarch would not have been possible without the support of the Westinghouse Turbine Components Fiant.

References

(1] J. Backus.
Can Programming Be Liberated from the Von Neumann Style? A Functional Style and Its Algebra of
Programs.
- CACAM 21(8):613-641, August, 1978.

[2] Oyvind Bjorke. ©
Computer Aided Part Manufactur_igg.
Computers in Industry 1:3-9, 1979.

[31 D.A. Bourne, R. Milligan, and P.K. Wright.
Fault Detection in Manufacturing Cells Based on Three Dimensional Visual Information.
In Proceedings of the Robot and Vision Seminar. to appcar June, 1982.

[4] Davis, R., and King, J.
An Overview of Production Systems.
In Elcock, E. W., and Michie, D. (cditor), Machine Intelligence, pages 300-332. Wilcy, New York,
1976.

[S} Tocpperwcin, L. L., Blackmon, M. T., et al.
ICAM Robotics Application Guide.
Technical Report AFWAL-TR-80-4042, Volume II, General Dynamics Corporation, April, 1980.

[6] Ennis, G. E., Eastwood, M. A.
Robotic System for Acrospace Baich Manufacturing.
Interim ‘1'cchnical Report 1R-812-8, McDonnell Douglas Corporation, 1979.

7} David Jack Mostow, Frederick Hayes-Roth.
A Production System for Speech Understanding,.
In D. A. Waterman and Frederick Hayes-Roth (cditor), Pattern-Dirccted Inference Systems, pages
471-482. Academic Press, New York, 1978.

A Samiet

-, - -

[S Sy

(8]

9

(10]

(11]

18

R. J. Popplestone. A. P. Ambler. and 1. Bellos.
RAPT: A language for describing assemblics.
The Industrial Robot :131-137, September, 1978.

Barry I. Soroka.
Debugging Robot Programs With A Simulator.
CADCAM-8 Conference , November, 1980.

D. A. Waterman, Frederick Hayes-Roth.

An Overview of Pattern Directed Inference Systems.

In D. A. Waterman and Frederick Hayes-Roth (cditor), Pattern- Directed [nference Systems, pages
3-22. Academic Press, New York, 1978.

Weck. m., Zenner, K.. and Tuchelmann, Y.
New Developments of Data Processing in Computer C. onlroIIed Manufacturing Systems.
Technical Paper MS79-161, Socicty of Manufacturing Engincers, 1979.

F T T R WLy iy B WL T T L Wb Sy Sy e . PeTy PRSP PESTLE T e e NP N GLE S NPUL S -

.
R —

